首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   595篇
  免费   79篇
  国内免费   60篇
化学   726篇
综合类   3篇
物理学   5篇
  2023年   20篇
  2022年   8篇
  2021年   17篇
  2020年   38篇
  2019年   24篇
  2018年   31篇
  2017年   13篇
  2016年   33篇
  2015年   31篇
  2014年   38篇
  2013年   30篇
  2012年   22篇
  2011年   48篇
  2010年   31篇
  2009年   32篇
  2008年   37篇
  2007年   38篇
  2006年   40篇
  2005年   41篇
  2004年   43篇
  2003年   23篇
  2002年   9篇
  2001年   8篇
  2000年   4篇
  1999年   7篇
  1998年   11篇
  1997年   7篇
  1996年   2篇
  1995年   9篇
  1994年   6篇
  1993年   10篇
  1992年   10篇
  1991年   2篇
  1990年   3篇
  1989年   1篇
  1988年   4篇
  1987年   2篇
  1972年   1篇
排序方式: 共有734条查询结果,搜索用时 15 毫秒
1.
BPh3 catalyzes the N-methylation of secondary amines and the C-methylenation (methylene-bridge formation between aromatic rings) of N,N-dimethylanilines or 1-methylindoles in the presence of CO2 and PhSiH3; these reactions proceed at 30–40 °C under solvent-free conditions. In contrast, B(C6F5)3 shows little or no activity. 11B NMR spectra suggested the generation of [HBPh3]. The detailed mechanism of the BPh3-catalyzed N-methylation of N-methylaniline ( 1 ) with CO2 and PhSiH3 was studied by using DFT calculations. BPh3 promotes the conversion of two substrates (N-methylaniline and CO2) into a zwitterionic carbamate to give three-component species [Ph(Me)(H)N+CO2⋅⋅⋅BPh3]. The carbamate and BPh3 act as the nucleophile and Lewis acid, respectively, for the activation of PhSiH3 to generate [HBPh3], which is used to produce key CO2-derived species, such as silyl formate and bis(silyl)acetal, essential for the N-methylation of 1 . DFT calculations also suggested other mechanisms involving water for the generation of [HBPh3] species.  相似文献   
2.
In the presence of the inexpensive and non‐toxic polymethylhydrosiloxane, the combination of copper(II) acetate and a chiral diphosphine displayed high catalytic efficiency in the asymmetric hydrosilylation of a series of aromatic ketones in air atmosphere and at room temperature. (R)‐1‐Arylethanols were obtained with up to 99% yield and 93% enantiomeric excess. Meanwhile, the electron effect and steric hindrance of substituents on the aromatic ring had an interesting influence on both the yields and enantioselectivities. Furthermore, a possible mechanism was presented to explain the influence of some key factors on the reaction.  相似文献   
3.
The synthesis and catalytic applications of trivalent rare-earth metal alkyl complexes have been well developed, but the chemistry of divalent rare-earth metal alkyl complexes lagged much behind. Herein, we report the synthesis, structure, and catalytic applications of a samarium(II) monoalkyl complex supported by a β-diketiminato-based tetradentate ligand, [LSmCH(SiMe3)2] (L=[MeC(NDipp)CHC(Me)NCH2CH2N(Me)CH2CH2NMe2], Dipp=2,6-(iPr)2C6H3). This complex is synthesized by the salt metathesis reaction of samarium iodide [LSm(μ-I)]2 and KCH(SiMe3)2 in 63 % yield. Its structure is characterized by single-crystal X-ray diffraction, showing a distorted square-pyramid coordination geometry. This samarium(II) monoalkyl complex exhibits high catalytic activity in the hydrosilylation of aryl and methyl-substituted unsymmetrical internal alkynes with secondary hydrosilanes, selectively providing the α-(E) products in high yields.  相似文献   
4.
A simple and efficient way to synthesize peptide-containing silicone materials is described. Silicone oils containing a chosen ratio of bioactive peptide sequences were prepared by acid-catalyzed copolymerization of dichlorodimethylsilane, hybrid dichloromethyl peptidosilane, and Si(vinyl)- or SiH-functionalized monomers. Functionalized silicone oils were first obtained and then, after hydrosilylation cross-linking, bioactive polydimethylsiloxane (PDMS)-based materials were straightforwardly obtained. The introduction of an antibacterial peptide yielded PDMS materials showing activity against Staphylococcus aureus. PDMS containing RGD ligands showed improved cell-adhesion properties. This generic method was fully compatible with the stability of peptides and thus opened the way to the synthesis of a wide range of biologically active silicones.  相似文献   
5.
Manganese, the third most abundant transition-metal element after iron and titanium, has recently been demonstrated to be an effective homogeneous catalyst in numerous reactions. Herein, the preparation of silica-supported MnII sites is reported using Surface Organometallic Chemistry (SOMC), combined with tailored thermolytic molecular precursors approach based on Mn2[OSi(OtBu)3]4 and Mn{N(SiMe3)2}2⋅THF. These supported MnII sites, free of organic ligands, efficiently catalyze numerous reactions: hydroboration and hydrosilylation of ketones and aldehydes as well as the transesterification of industrially relevant substrates.  相似文献   
6.
Two silylene‐spaced ((E)‐vinylsilyl)anthracene‐dipyrromethane dyads have been designed and synthesized by RhCl(PPh3)3‐catalyzed hydrosilylation reactions of 5‐methyl‐5′‐(ethynylaryl)dipyrromethanes with (9‐Anthryl)‐dimethylsilane. The complexation studies of dyads toward different anions have also been performed, which reveal that dyads exhibit a highly selective response towards fluoride anion attributable to both hydrogen‐bonding and pentacoordination phenomena. This dual‐mode fluoride recognition event is unprecedented and may pave the way for future developments in the areas of porphyrinoids, organosilicon, polymer, and supramolecular chemistry.  相似文献   
7.
Hydrosilylation is an important process, not only in the silicon industry to produce silicon polymers, but also in fine chemistry. In this review, the development of rhenium-based catalysts for the hydrosilylation of unsaturated bonds in carbonyl-, cyano-, nitro-, carboxylic acid derivatives and alkenes is summarized. Mechanisms of rhenium-catalyzed hydrosilylation are discussed.  相似文献   
8.
Katharina Jacob 《合成通讯》2014,44(9):1251-1257
Several triazoles have been synthesized. They were obtained by a Cu-catalyzed cycloaddition of azides and alkynes. The reaction takes place in aqueous media under microwave irradiation using a copper catalyst based on porous glass. The products have been characterized by infrared, gas chromatography–mass spectrometry, 1H NMR, and 13C NMR in addition to melting = point determination. Furthermore the in situ building of some azides and alkynes and the influence of the used metal species was investigated.  相似文献   
9.
TsNBr2 reacts with alkyne in the presence of methanol to form α,α-dibromodimethyl ketals instantaneously. The reaction proceeds smoothly at room temperature without using any other catalyst. The one step reaction can be carried out with both aromatic and aliphatic alkynes in excellent yield.  相似文献   
10.
The first metal-catalyzed oxidative alkynylations of primary alcohols or aldehydes to form α,β-acetylenic ketones (ynones) are described. Deuterium labelling studies corroborate a novel reaction mechanism in which alkyne hydroruthenation forms a transient vinylruthenium complex that deprotonates the terminal alkyne to form the active alkynylruthenium nucleophile.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号